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Abstract

A study of crack propagation paths in the situation where the crack is suppressed to open during growth due to high

compressive forces has been performed. This problem was analyzed theoretically very recently by the authors and is

here extended to involve a limited number of illustrative experimental results reported elsewhere in the literature. By

analyzing the experimental crack growth patterns, the conclusion is that the model cannot describe the more realistic

microscopic failure in detail. Since shear crack growth on the microscale strongly depend on inhomogenities in the

material, like cavities, grains or inclusions; the closed crack growth patterns observed are not smooth or free of kinks.

Nevertheless, the model show good agreement with the reported experimental observations of the paths of closed

macroscopic mode II cracks on samples in brittle materials, induced under overall compression.

Failure patterns experimentally observed supports the theory that the growth of mode II cracks under compression

in brittle materials follow a propagation path described by a function y ¼ kxb, where b ¼ 3=2. This is strongly supported
by the measured values obtained from various experiments. In all the studied experiments, the exponent b was found in

the interval [1.43–1.58]. Further, an investigation of the curvature parameter k has been performed and the conclusion is

that k does also agree with the simplified model, even though not as good as the exponent b. However, k differs in

general <15% from the theoretical value predicted by the model. The process of crack growth is in the simplified model

assumed to be controlled by the mode II stress intensity factor KII of the main crack and the difference between the

compressive remote normal stress parallel with the crack plane (r1
11) and the compressive remote normal stress per-

pendicular to the crack plane (r1
22). � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Cracks in brittle materials are often governed by linear elastic fracture mechanics. To this end crack
initiation and propagation have been the subjects of intensive investigation in rock- and fracture me-
chanics, both experimentally and theoretically. However, most of the previous studies are focused on the
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mechanisms of crack initiation and propagation of opening (mode I) cracks (cf. Erdogan and Sih, 1963;
Bilby and Eshelby, 1968; Cotterell and Rice, 1980; or Hayashi and Nemat-Nasser, 1981a, 1981b). Ex-
perimental observations indicate that pure mode I crack growth is usually preferred before crack growth
under mixed-mode or pure shear mode (mode II) conditions. Even under pure shear loading, the crack
generally grows under mode I conditions as a result of local tensile stresses at the tip. For opening mode, an
often used criterion is assumed crack extension in the plane of maximum tangential stress. Another fre-
quently used propagation criterion, also for opening mode, is the assumption of crack growth through an
incipient kink in a direction of vanishing mode II stress intensity factor KII. However, according to results
reported by Melin (1986, 1987), can mode II crack growth in a brittle material be preferred if a high
confining pressure is present or the when ratio between the critical stress intensity factors, KIIc=KIc, is
surprisingly low.

There are several interpretations of mode II failure, and the most common view is that shear mode crack
growth is caused by a linkage of many small tensile cracks, so-called microcracks, (cf. Broberg, 1987; Shen,
1993; or Li, 1999). Broberg (1987) argued that on a microscale, mode II growth could consist of repeated
microseparations at an angle to the crack direction due to tensile forces of short reach near the crack tip.
The zigzag crack paths often seen in mode II growth indicate this shear mode microseparation. In other
cases the microseparation mechanism could consist of pure shear flow resulting in pure sliding of the crack
surfaces. However, these mixed microseparation mechanisms occur as a result of the local conditions near
the crack tip. It is believed that at a mixed mode Iþ II fracture, the crack grows in a direction that
maximizes one of the stress intensity factors KI or KII, rather than in a direction that maximizes some
functional of KI and KII. Furthermore, Broberg (1987) argues that if the compressive stress field at the crack
tip is so high that an opening crack cannot propagate more than a very short distance from the tip because
compressive stresses force the separation to close at its end, the continued crack growth possibly occur in
the direction of the main crack, independent of the processes taking place in the microscale. A high con-
fining pressure will then prohibit crack opening of the growing crack regardless the direction of crack
growth. Compressive load may, therefore, create a dense array of microcracks. The crack will then grow by
successive coalescence with microcracks in a narrow band extending from the crack edge, Broberg (1999). A
more detailed discussion of the nucleation mechanism of microcracks in brittle materials can be found in,
among others, (Broberg, 1987; Suresh, 1994; or Bobet and Einstein, 1998).

Thus, at a sufficiently high confining pressure leading to a vanishing opening stress intensity factor
KI ¼ 0 at the tip of a kink in any direction, the crack is assumed to extend along a smooth curved path that
maximizes the mode II stress intensity factor KII on the macroscale. One arrives at the same conclusion
assuming crack growth along the plane of maximum shear stress as by assuming that the crack follows the
direction of the largest KII.

Heterogeneous brittle materials, such as rock, concrete and ceramic, contain a large number of different
inhomogenities (e.g. soft and hard inclusions such as voids, pores and microcracks). These defects provide
the crack tip with a rather large process region, which may be responsible for the macroscopic mode II
failure under compressive loads in such materials. In order to figure out conditions favoring mode II
fracture Jung et al. (1992) conducted extended tests of pure shear loading on various brittle materials. It
was reported that mode II crack growth occurred under pure shear loading in some materials, such as rock,
while mode I crack growth occurred in other materials like glass or PMMA. A similar study is found in
Melin (1989) where fracture paths in concrete, mortar and PMMA were analyzed and compared. Some
researchers have reported that experiments conducted in brittle materials can result in propagation of a
mode II crack when the compressive load is substantially high, following the occurrence of a mode I crack
(cf. Lajtai, 1974; or Petit and Barquins, 1988). More recently (e.g. Reyes, 1991; Reyes and Einstein, 1991;
Shen, 1993; Shen et al., 1995; Bobet and Einstein, 1998; Rao, 1999; or Bobet, 2000) pure mode II cracks
were obtained in experiments conducted in brittle materials under uniaxial or biaxial compressive load. As
confinement increased cracking was only produced by mode II cracks as observed by Bobet (2000), who in
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experiments and in a stress analysis concluded that shear cracks always initiated in compressive stress fields
and propagated as mode II cracks on the macroscale. Thus, the result reported by Bobet (2000) verifies the
theoretical results discussed by Melin (1986) in an analysis of crack kinking under confining stresses. Hence,
there is a large body of evidence showing that mode II cracks may appear under compression, at least on a
macroscale.

Recently Leblond and Frelat (2000) analyzed crack deflection from an initially closed stationary crack in
a linearly elastic material. Although they assume the crack to be initially closed at the onset of crack growth
due to compressive forces, the continued crack growth is supposed to occur under mode I conditions after
initial kinking, which can be abrupt. Consequently, their crack path criterion is only applicable when the
crack is allowed to open up. However, currently the authors analyzed (Isaksson and St�aahle, 2001), theo-
retically, the macroscale mode II crack propagation path in a brittle material under influence of high
compressive normal stresses. An expression for the mode II stress intensity factor at a crack extension was
found under the condition that the crack opening is suppressed during crack growth. The expression was
found as a function of the mode II stress intensity factor KII at the parent crack and the difference between
the compressive remote normal stress r1

y perpendicular to, and the normal stress r1
x parallel with, the

parent crack plane. Based on this expression, a crack growth direction model was suggested. At a suffi-
ciently high non-isotropic compressive normal stress, so that the crack remains closed, the model predicts
that the crack will extend along a path that maximizes the mode II stress intensity factor. The mode II crack
growth most likely follows a curved path and the deflection from the original crack plane increases with
increasing non-isotropic biaxial compressive normal stress r1

x � r1
y . Only at isotropic remote compressive

normal stress the crack will continue straight ahead without change of the direction.
To verify the applicability of the model to real problems in rock mechanics, a comparison with exper-

imental data is necessary. The objective of this paper is to investigate the curvature of growing mode II
cracks where the initiation and propagation of the crack is controlled by a shear stress. The crack contours
are obtained from various experiments reported on brittle materials in the literature.

2. The problem

Cracks subjected to shear load under high remote compressive normal stresses in brittle isotropic ma-
terials are considered. Numerous experimental and theoretical efforts have been devoted to the under-
standing of the crack initiation and propagation of pre-existing cracks in brittle materials, even though the
attention mainly has been focused on mode I crack growth. Increasing attention has been paid to mode II
crack growth in rock, but there is still a lack of systematic research such have been done for mode I failure.
Not only are the classical mixed mode fracture criteria incapable of predicting the mode II crack growth
under compressive load, but also it seem as the process of shear crack growth is not well understood.
Samples in various brittle materials (like marble or gypsum) have demonstrably cracked in shear mode in
experiments conducted under compressive loads (cf. Reyes, 1991; Reyes and Einstein, 1991; Shen, 1993;
Shen et al., 1995; Bobet and Einstein, 1998; Rao, 1999; or Bobet, 2000). A review of the experiment setups is
found in the Appendix A. In the reported experiments the authors argued that there is clear evidence that
mode II cracks do initiate and propagate. After examination of the cracks it was found that some of the
developed cracks were mode II cracks or a combination of a mode I crack followed by a mode II crack
growth. The mode II cracks initiated from tips of pre-existing cracks and were reported to propagate in a
stable manner. It is not sure if the initiated cracks were mode II cracks on a microscale (i.e. grain scale) but,
as Bobet and Einstein (1998) concluded, on a macroscale the cracks were indeed mode II cracks. Later, in a
stress analysis by Bobet (2000), it was concluded that the direction of the mode II cracks were determined
by the direction of the maximum shear stress and the cracks were initiated (and propagated) in a com-
pressive stress field.
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3. Analysis of the mode II crack propagation path

In all experimental configurations the mode II crack surfaces, during crack propagation, were subjected
to a remote biaxial compressive stress field consisting of three main components; a compressive normal
stress perpendicular to the crack plane (r1

22), a compressive normal stress parallel with the crack plane (r1
11)

and a shear stress parallel to the crack plane (r1
12). The first two stress components lead to the closing of the

crack surfaces while the shear stress acts as the driving force for the continued crack growth, which is
predominantly mode II in character.

The resulting crack growth patterns emerging from pre-existing cracks are analyzed. Since the pre-
existing cracks in the experiments considered are straight and subjected to compression, the shear crack
propagation path model recently discussed by the authors elsewhere (Isaksson and St�aahle, 2001) is believed
to be appropriate when analyzing the subsequent crack growth of a mode II crack under compressive load.
In reality, most of the pre-existing cracks in brittle materials will close when subjected to a compressive
stress, and most of the cracking will therefore effectively occur from closed cracks. The fracture process is
assumed to occur under mode II conditions since a high confining pressure suppresses the crack opening.
Therefore the crack is believed to extend along a path that maximizes the mode II stress intensity factor KII,
as discussed above. This assumption is equivalent with a criterion for maximum energy release rate as crack
opening is suppressed. One arrives at the same conclusion assuming crack growth along the plane of
maximum shear stress as by assuming that the crack follows the direction of the largest KII.

In Isaksson and St�aahle (2001), an expression for the mode II stress intensity factor at the tip of a kink
was calculated, both numerically with an integral equation using the solution scheme found by Lo (1978)
and later refined by He and Hutchinson (1989), and by particular analytic solutions. By distributing dis-
locations along a straight kink contour such that the stress boundary conditions across and along the kink
was fulfilled (i.e. kink opening was prohibited), an expression describing the curved closed mode II crack
extension in front of a pre-existing straight stationary crack could be found. The confidence in the solution
was strengthened by analyzing the same problem using a boundary element method. Here follows a brief
summary of the crack path prediction and the interested reader is advised to the original article for a more
comprehended discussion.

Consider a locally plane structure initially containing a sharp semi-infinite crack, Fig. 1. A Cartesian
coordinate system ðx1; x2; x3Þ, and a polar coordinate system (r ¼ ðx21 þ x22Þ

1=2; h ¼ tan�1½x2=x1�; z ¼ x3) are
attached to the crack tip. The crack occupies the region x1 6 0 and x2 ¼ 0. The extent of the body in the x3-
direction is assumed large wherefore plane strain conditions are assumed to prevail. The body is subjected
to a high remote biaxial compressive stress, not necessarily isotropic, and loaded so that shear stresses are

Fig. 1. Geometry and load of the crack.
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present in the crack plane wherefore a mode II stress intensity factor KII has arised at the crack tip.
Moreover, suppose the compressive load is sufficiently high leading to a vanishing opening mode I stress
intensity factor (KI ¼ 0). Assuming homogenous material and linearly elastic isotropic behavior, the first
two terms of the stress tensor at the crack tip may be expressed as

rij ¼ ð2prÞ�1=2KIIf II
ij ðhÞ þ r1

ij dij as r ! 0 for i ¼ 1; 2 and j ¼ 1; 2: ð1Þ

The dimensionless angular function f II
ij ðhÞ can be found in any textbook of fracture mechanics. Eq. (1)

yields as long as the mode I component of the stress intensity factor is vanishing.
Introduce the non-isotropic stress term r1

11 � r1
22, i.e. the difference between the remote compressive

normal stress parallel with, and the remote compressive normal stress perpendicular to, the crack plane. Let
the stress difference term r1

11 � r1
22 be regarded as a superimposed uniaxial stress in the x1-direction on a

homogenous stress r22. Eq. (1) can be rewritten as

rij ¼ ð2prÞ�1=2KIIf II
ij ðhÞ þ ðr1

11 � r1
22Þd1id1j þ r1

22dij: ð2Þ

The stress state of the remote biaxial normal compressive stress is pure isotropic when r1
11 � r1

22 ¼ 0.
The crack is assumed to form a single incipient straight kink in a small angle x0 to the crack plane as

illustrated in Fig. 2. The angle x0 is with respect to a clockwise rotation from the crack plane. The kink
length l is understood to be small, compared to the length of the parent crack, wherefore the asymptotic
problem for a semi-infinite stationary parent crack is analyzed. The key result presented is the expression

x0 ¼
8

13

ffiffiffiffiffi
2l
p

r
r1
11 � r1

22

KII

; ð3Þ

where x0 is the angle from the previous crack plane to the new assumed direction of crack growth. It was
shown that the (small) angle x0 gives a good approximation of the deflection angle for the straight kink that
maximizes the mode II stress intensity factor k2 at the kink tip for small values of load ratio
ðr1

11 � r1
22Þl1=2=KII. The sign of KII is with reference to a local Cartesian coordinate system at the crack tip

with an axis (x1) in the direction of the extension of the crack plane before deflection and the other axis
perpendicular to this in the counter clock-wise direction (x2). The continued crack growth is assumed to
follow a smoothly curved path for which the shear stress intensity factor k2 at the branched tip is maximized
at all times.

From Eq. (3) it follows that when the remote biaxial compressive normal stress is isotropic (i.e.
r1
11 ¼ r1

22) the crack will continue straight ahead without change of direction. The superimposed isotropic
compressive stress r1

11 ¼ r1
22 is believed to have no significant importance for the kinking problem, except to

close the crack surfaces, and can therefore be neglected if friction between the crack surfaces is disregarded.
The effect of friction is discussed later.

Fig. 2. Quantities of the kinked crack. The kink, of length l, is extended in an angle x0.
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For small x0, i.e. y 
 x, the deflection at the end of the kink is y ¼ x0l as shown in Fig. 3a,

y ¼ x0l ¼ kl3=2; ð4Þ
where

k ¼ 8

13

ffiffiffi
2

p

r
r1
11 � r1

22

KII

:

The radius of curvature, R, is for small dy=dx given by

1

R
¼ d2y

dx2
¼ 3

4
kl�1=2: ð5Þ

By putting l � x in Eq. (4)

y ¼ kx3=2; ð6Þ
which is similar to the expression found for the curvature of opening cracks discussed by Leblond and
Frelat (2000) in a study of crack extension of an initially closed crack.

Thus, in theory, the crack is hypothesized to extend along a smooth curved path described by Eq. (6).
Since the deflection of the kink from the parent crack plane is assumed to be small, Eq. (3) is believed to
give an appropriate crack path prediction on the macroscale for a straight kink extension as a function of
KII, the remote normal stress difference term r1

11 � r1
22 and the kink length l.

Eq. (6) may also be justified by simply considering the stress field at a stationary pure mode II crack tip.
For small angles h the angular functions f II

ij ðhÞ in Eq. (1) may be approximated by linear functions of h
since sin h � h and cos h � 1 in a first order approximation. Consequently, as y 
 x, h ¼ tan�1 y=x � y=x,
and r ¼ ðx2 þ y2Þ1=2 � x, the stress field in front of the mode II crack tip can be approximated to:

r11 � r1
11 � � KIIffiffiffiffiffiffi

2p
p x�1=2 y

x
¼ ax�3=2y þ Oðy=xÞ2; ð7Þ

r22 � r1
22 �

KII

2
ffiffiffiffiffiffi
2p

p x�1=2 y
x
¼ bx�3=2y þ Oðy=xÞ2; ð8Þ

Fig. 3. (a) Deflection of the kink. (b) Small extension of a closed fracture from a pre-existing crack.
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and

r12 �
KIIffiffiffiffiffiffi
2p

p x�1=2 þ Oðy=xÞ2; ð9Þ

where a and b are arbitrary constants. In order to fulfill the boundary conditions that the normal stresses
r11 � r1

11 and r22 � r1
22 have to remain constant (independent of small h) in front of the crack tip, one

realizes that y ¼ cx3=2 is the only possible non-trivial solution to Eqs. (7) and (8). An arbitrary constant c
describes the curvature of the path. The conclusion is that an equation describing the curved closed mode II
crack propagation path in front of a pre-existing straight stationary crack is required to be described by a
function y ¼ cx3=2 in order to maintain the stress boundary conditions.

As the continued mode II crack growth is assumed to extend along a smooth curved path, one realizes
that an extension of a straight kink not fully can describe the crack propagation path since the stress in-
tensity factors of a straight and a curved crack extension are expected to differ. By assuming that the crack
deflection from the x-axis can be described by a function y ¼ cxc (see Fig. 3b) calculations of the mode II
stress intensity factor at the tip of a straight extension (c ¼ 1) and at the tip of a curved extension (c ¼ 3=2)
were performed analytically in Isaksson and St�aahle (2001) using a solution method introduced by Cotterell
and Rice (1980). An assumption of small deflection y (i.e. y 
 x) was made for the crack extension along
the x-axis with the parent crack tip located at the origin, Fig. 3b. The deflection angle of the curved ex-
tension along the x-axis was given by h ¼ y0ðxÞ, where y 0ðxÞ ¼ oyðxÞ=ox. It was shown that the asymptotic
value of the curvature parameter c maximizing the mode II stress intensity factor k2 at the tip of a crack
extension described by the function y ¼ cxc is

c ¼ � 8

13

ffiffiffi
2

p

r
½r1

11 � r1
22�

ffiffi
l

p

KII

� �0:491
½r1

11 � r1
22�

ffiffi
l

p

KII

for c ¼ 1; ð10Þ

and

c ¼ � 8
ffiffiffiffiffiffi
2p

p

39

½r1
11 � r1

22�
KII

� �0:514
½r1

11 � r1
22�

KII

for c ¼ 3=2: ð11Þ

Thus, it seems justified to conclude that the straight kink model can, on the macroscale, find an approx-
imate angle that maximizes the stress intensity factor k2 for a curved extension.

In order for the analytical model to predict a crack propagation path with a curvature that is inde-
pendent of the extension length l, the exponent c in the expression y ¼ cxc describing the crack propagation
path is required to be equal to 3/2, Isaksson and St�aahle (2001). In that case, when c ¼ 3=2, is the expression
predicting the crack propagation path a function only of the mode II stress intensity factor KII at the parent
crack and the difference between the compressive normal stress parallel with (r1

11), and perpendicular to
(r1

22), the parent crack plane.

3.1. General assumptions and limitations

As this simplified model does not consider friction effects, nor de-cohesion effects, the influence of the
shielding effect due to arised friction on the curved crack extension is not considered. One realizes that
friction along the crack surfaces may have an influence on the crack growth under our circumstances since
the crack surfaces are pressed together. Shen (1993) reported that friction has a great influence on the
fracture toughness ratio KIc=KIIc. Since a possible mode II growth will occur straight ahead, or in small
angle to, the previous crack plane it is believed that the friction has a larger affect on the mode of the growth
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rather than the direction of the continued mode II crack growth, as discussed theoretically by Melin (1986)
in an analysis of crack kinking in a linear-elastic material under high confining stresses. A thorough analysis
that takes full attention to the effect of friction on the curvature is regarded to be cumbersome and
comprehends many difficulties. Nevertheless, one may draw some conclusions since the trend in the initially
mode II crack propagation path should be the same. The argument that justifies this is as follows: at a
sufficiently large compressive load, as compared to remote load, the crack cannot extend via a kink under
opening mode I conditions. The only possibility seems to be mode II crack growth that occurs in a direction
straight ahead of the crack plane if the crack is supposed to follow the plane of maximum shear stress. Thus
the continued crack growth is assumed to follow a (on a macroscale) smoothly curved path co-planar, or in
a small angle, to the original crack plane. The in-plane shear stress field is affected when friction is present
between the crack surfaces. As KII is controlled by the in-plane shear stress, Eqs. (3) and (11) are to some
extent affected by friction, and in turn, the supposed deflection of the crack extension according to the
model.

The conclusion is that the proposed model is restricted to cases where the friction is negligible (e.g.
lubricated surfaces). It was shown in an earlier paper (Isaksson and St�aahle, 2001) that the effect of hom-
ogenous friction between the crack surfaces is a reduction of KII. At higher load of friction on the crack
surfaces, opening of the crack is suppressed and mode II crack growth is promoted at crack growth. Thus,
as long as the deflection of the crack propagation curve is small, the effect of friction on the crack extension
is believed to be limited.

4. Experimental analysis and results

In the experiments reported, there is clear evidence that mode II cracks do initiate and propagate (cf.
Reyes, 1991; Reyes and Einstein, 1991; Shen, 1993; Shen et al., 1995; Bobet and Einstein, 1998; Rao, 1999;
or Bobet, 2000). The crack growth where reported to occur in a stable manner. The mode II crack growth
initiates in all the experiments referred at the tip of straight pre-existing cracks and continues in the di-
rection straight-ahead in a, on the macro level, slightly curved path. The researchers reported that ob-
servations on the surface of the specimens revealed that the cracks initiated at the tips of the pre-existing
cracks as crushing of the material, or some material spalling from the surface, occurred. Phenomena that
are characteristic of a compressive stress field regarding to the experimentalists referred. Furthermore,
Bobet and Einstein (1998) reported that inspection of the mode II crack surfaces showed the presence of
many small kink steps and crushed material. As our model, briefly described in Section 3, is based on an
assumption of mode II crack growth, we conclude that the model may be suitable for circumstances as in
the reported experiments.

For the experiments discussed, pictures on cracked samples are shown. In this investigation, these
pictures were photocopied and enlarged and then, by simply measuring by hand, data points (coordinates)
describing the mode II crack patterns could be obtained.

The crack patterns studied are not smooth. Sometimes the material in the samples was crushed, making
it very hard to figure out the exact crack path, and sometimes it was even more difficult to realize where the
pre-existing cracks ended and where the initiated mode II crack growth started. Thus care must be taken
when evaluating the experiments, especially as crack contours on the microscale is considered. In some
cases, when so-called material spalling has occurred, the measured data points were collected after the point
where the crack growth continued after the spalling.

A Cartesian (x–y) coordinate system is introduced with its origin coinciding with the pre-existing crack
tip, as discussed in Section 3, and the resulting crack growth pattern emerged from the pre-existing cracks
was analyzed. In Fig. 4a–f, traces of mode II crack propagation paths from the various experiments are
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marked. The length of the internal pre-existing cracks is 2a and the x- and y-axis in the plots are normalized
with respect to a. The specimens were made of gypsum, except in the experiment reported by Rao (1999)
where the pre-existing cracks were surface cracks in a specimen made of marble.

The collected coordinates were transferred to log–log diagrams, Fig. 5a–f, for each crack pattern
measured. In that way, the exponent b and the curvature parameter k in the assumed expression

y ¼ kxb; ð12Þ

could be determined by fitting a polynomial log y ¼ log k þ b log x that fits the measured data in a least-
square sense.

Sometimes, due to the above discussed spalling or pulverization of the material, the coordinates de-
scribing the crack growth is somewhat scattered. For this reason a few coordinates are neglected when
fitting the polynomial. By inspection of Fig. 5a–f one may realize that this can be justified as it seems as the

Fig. 4. Mode II crack patterns emerged from pre-existing cracks. The propagation paths are measured from various experiments

reported in the literature. The x- and y-axis are normalized with a, where 2a is the length of the pre-existing cracks.
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few coordinates removed do not follow the same trend as the others. Nevertheless they have great influence
when finding the polynom in a least-square sense. All coordinates are marked in the diagrams and those,
which are removed, are marked differently.

The results are summarized in Table 1. The load angle h and the theoretical value of k have been cal-
culated according to the expression found in Appendix A. By examination of the results summarized in
Table 1, it seems justified to conclude that the model can, on the macroscale, reproduce the mode II crack
curvature obtained in the experiments. In all curves measured, the exponent b was found to be in the in-
terval [1.43–1.58], which support the crack path model analyzed as the analytical expression prescribes
b ¼ 3=2 (i.e., c in Eq. (11)).

The results of the measured curvature parameter k also agree with the simplified model, but maybe not
as good as the exponent b. This may be explained by the fact that the samples were crushed and pulverized

Fig. 4 (continued)
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during crack growth or that friction effects influenced. In most of the experiments spalling occurred in front
of the pre-existing cracks wherefore the continued crack initiation and growth may also been affected by a

Fig. 5. Log–log diagram of the corresponding plots in Fig. 4a–f. The solid lines are least square fitted straight lines to the measured

propagation paths.

Table 1

Results obtained for h defined in Fig. 8, and k and b given in Eq. (12)

Experiment referred Load angle h (�) Theor. k k b

Fig. 11 in Bobet and Einstein (1998) 60 0.133 0.120 1.48

Fig. 6.8 in Rao (1999) 50 0.049 0.052 1.49

Fig. 2.7 in Reyes and Einstein (1991) 30 0.133 0.116 1.54

Fig. 3.23 in Reyes (1991) 30 0.133 0.118 1.58

Fig. 3.20 in Reyes (1991) 30 0.133 0.116 1.53

Fig. 6 in Shen et al. (1995) 30 0.133 0.147 1.43
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disturbed stress field, as compared to the theoretical stress field far away used in the analytical model.
Nevertheless, with all these assumptions in mind, k differs in general less than 15% as compared to the
theoretical value predicted by the model (i.e., c in Eq. (11)).

The experimental results lend confidence to the assumption of a macroscopic closed mode II crack
propagation path described by Eq. (11). In fact, the agreement between the studied experiments and the
propagation path prescribed by the model is astonishingly good considering the simplifying assumptions
made for the analysis.

4.1. A note on crack interaction

In the experiments referred, as described in the Appendix A, two inclined pre-existing cracks were
separated the distance c and arranged parallel to each other with their respective crack plane separated the
distance s. Bobet and Einstein (1998) report an interesting observation of the influence of ligament length c,
i.e. the distance between the two pre-existing cracks. Up to a distance of 11

2
times the crack length, i.e. 3a,

the cracks are reported to affect each other during crack growth. As the two pre-existing cracks may in-
fluence each other stress fields at the crack tips, an investigation of the stress conditions under different load
situations have been conducted. The numerical analysis was performed with the boundary element program
FROCK (Chan et al., 1990; Bobet, 1997). FROCK is based on the displacement discontinuity method
(DDM) and provides an easy way to model crack growth under various loads. The two inclined straight
pre-existing cracks were modeled with 10 equally spaced special crack elements. The crack tips were
modeled with square-root displacement discontinuity elements, while the body of the crack was modeled
with linear displacement discontinuity elements. All the elements had the same length and the uniaxial load
P was applied at a distance far away from the cracks. The stresses in front of the inner tips of the cracks
were calculated at varied inclination angles h and ratio s=c, (the definitions of h, s and c as in the Appendix
A). Note that the remote normal stresses r1

11 and r1
22 are compressive in front of the crack tips only for crack

inclination angles h ranging from 30� to 60�, cf. Bobet and Einstein (1998). Calculations is performed for
two cases of inclination angles h, (i.e., h ¼ 45� and h ¼ 30�) and for each case, ligament lengths of c ¼ 2a
and c ¼ 4a are compared. In all the computed cases s ¼ 1=2a.

Fig. 6a–d show the calculated stresses r11, r22 and r12 along the crack plane at distance x=a in front of
the inner tips. The stresses are normalized with the load P. As can be seen the calculated compres-
sive normal stresses r11 and r22 are somewhat different due to the interaction between the crack tips
for c ¼ 2a than for c ¼ 4a. At c ¼ 4a the stress field in front of the inner crack tip is approximate at the
same magnitude as compared to the stress field from an isolated crack tip, Fig. 6e and f, whereas the
stresses r11 and r22 are more influenced by the interacting tip when c ¼ 2a. Thus, the ligament length c has
an influence on the normal stress difference term r11 � r22 in the plane of the pre-existing cracks. The shear
stress r12, however, remains approximately at the same stress magnitude, independent of c in the com-
putations.

Fig. 7 indicates that the normal stress difference r11 � r22 in front of the inner tip is much more sensitive
to the ligament length c at h ¼ 45� then at h ¼ 30�. When h ¼ 45� and c ¼ 2a, the normal stress difference
r11 � r22 in front of the crack may become around 9.5 times as high as compared to when c ¼ 4a. The
corresponding highest ratio becomes 1.4 for h ¼ 30�, As discussed, the normal stress difference r11 � r22

may have a strong effect on the deflection of the crack extension, according to the expressions in Eqs. (3),
(10) and (11). The conclusion is that, according to the simplified model, the influence from an interacting
crack tip, on the crack deflection, is more pronounced when the cracks are inclined h ¼ 45� than when
h ¼ 30�. This may explain why the mode II cracks obtained in the experiments, cf. Bobet and Einstein
(1998), were reported to affect each other during crack growth for ligament length c6 3a.

However, the interacting effect from the other crack tip may be limited in the load cases investigated here
since the calculated ratio ðr11 � r22Þjc¼2a=ðr11 � r22Þjc¼4a in front of the crack tip appears to be low for
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h ¼ 30� (and h ¼ 60�), Fig. 7. Nevertheless, even though it may be small, the interaction effect can be one of
the possible reasons for the mismatch between the calculated and measured k in Table 1.

Fig. 6. Normalized in-plane stresses in front of the inner tips of the pre-existing cracks of length 2a. (a) Inclination angle h ¼ 30� and
c ¼ 2a, (b) inclination angle h ¼ 30� and c ¼ 4a, (c) inclination angle h ¼ 45� and c ¼ 2a, (d) inclination angle h ¼ 45� and c ¼ 4a, (e)
an isolated crack with inclination angle h ¼ 30� and (f) an isolated crack with inclination angle h ¼ 45�.
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5. Conclusions

A number of comparisons between experiments showing the traces of mode II crack growth under
compressive loading reported in literature and the curvature prescribed by the analytical model discussed
by the authors elsewhere (Isaksson and St�aahle, 2001) show good agreements. The simplified model is based
on an assumption of crack growth when the crack is constrained to remain closed due to high compressive
stresses. The experiments referred have been conducted under uniaxial and biaxial compressive load
and demonstrably cracked in mode II in samples made of brittle materials. By analyzing and evaluate
the experimental mode II crack growth paths emerged from pre-existing cracks, the conclusion is that
the model can not describe the more realistic microscopic failure in detail. Since mode II cracks on the
microscale depend on inhomogenities in the material the closed crack paths observed are not smooth.
Nevertheless, the analyzed model shows qualitatively a very good agreement with the reported experi-
mental observations of the curvature of closed macroscopic mode II cracks subjected to overall com-
pression.

The main conclusions obtained are:

• Crack patterns experimentally observed seems to indicate that the path of mode II cracks under com-
pression in some brittle materials follow a crack propagation path described by y ¼ kxb. This is strongly
supported by the measured values obtained. In fact, the agreement between the experiments and the
propagation path prescribed by the model, in which b ¼ 3=2, is astonishingly good considering the sim-
plifying assumptions made for the analysis. In the studied experiments, b was found in the interval [1.43–
1.58].

• An investigation of the curvature parameter k has also been performed. The analytical model prescribes
for a curved crack growth k ¼ �8=39ð2pÞ1=2½r1

11 � r1
22�=KII, where KII is the mode II stress intensity factor

of the parent crack, r1
11 is the remote compressive normal stress parallel with the crack plane and r1

22 is
the remote compressive normal stress perpendicular to the crack plane. The conclusion is that k also
agree very good with the simplified model, even though not as good as the exponent b. The measured
k differs in general less than 15% as compared to the theoretical values predicted by the model, which
is considered to be surprisingly good.

• The influence of the ligament length between two parallel cracks, on the crack deflection, has been in-
vestigated by using a boundary element program. The conclusion is that the influence from the stress

Fig. 7. The ratio between the in-plane normal stress difference term r11 � r22 at c ¼ 2a and at c ¼ 4a for crack inclinations h ¼ 30� and
h ¼ 45�.
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field of an interacting crack tip, on the crack deflection, is more pronounced when the cracks are inclined
h ¼ 45� than when h ¼ 30� according to the simplified model. Even though it may be small, the interac-
tion effect can be a reason for the mismatch between the measured k and the curvature prescribed by the
model.
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Appendix A. Description of the referred experiments

In (Reyes, 1991; Reyes and Einstein, 1991; Shen et al., 1995; and Bobet and Einstein, 1998) samples in a
brittle rock-like material, gypsum, were designed in the following way:

Two pre-existing cracks of length 2a were arranged in the central part of specimens as described by Fig.
8. The length of the ligament between the inner tips was c. Different inclinations h of the fractures and the
ligament (i.e. the ratio s=c) were then used to investigate the influence of the fracture geometry on failure
modes. The samples were loaded uniaxially or biaxially while the fracture initiation and propagation
process was monitored with a video camera.

The length of the pre-existing cracks were 2a ¼ 12:7 mm while the samples were manufactured in the
dimension 24a� 12a (height� width). Since the length of the fractures was much smaller than the thickness
of the specimen (30 mm), the fractures can be considered to be in plane strain conditions.

The inclination of the two pre-existing cracks in the experiments, h, varied from 30� to 60� in steps of 15�.
However, only when the ligament inclination ratio s=c < 1=3, the specimens where reported to fracture in

Fig. 8. Experimental setup and definitions of quantities.
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pure mode II. At larger bridge inclinations the specimens fractured in mode I or a combination of mode I
and mode II. Only the crack paths achieved under shear mode are discussed in this investigation.

By the definitions in the Fig. 8 may the uniaxial load P of the specimens be transferred to a local
Cartesian (x1; x2) coordinate system. The far field stresses may be expressed as:

r11 ¼ �P sin2 h; ðA:1Þ

r22 ¼ �P cos2 h; ðA:2Þ
and

r12 ¼ �P sin h cos h: ðA:3Þ
If the geometry of the specimens is regarded as infinite sized cracked plates, the mode II stress intensity
factor KII at the crack tips may be expressed as:

KII ¼ r12

ffiffiffiffiffiffi
pa

p
; ðA:4Þ

where r12 is the uniform in-plane shear stress at infinity. If friction is neglected on the crack surfaces and
crack interaction is disregarded, r12 is obtained from Eq. (A.3).

An approximate theoretical expression of the curvature parameter k in Eq. (12) can be obtained by use
of Eqs. (A.1)–(A.4):

k ¼ � 8
ffiffiffiffiffiffi
2p

p

39

1ffiffiffiffiffiffi
pa

p sin2 h � cos2 h
sin h cos h

: ðA:5Þ

As can be seen in Eq. (A.5), jkj is symmetric around the inclination angle h ¼ 45�, wherefore jkj at h ¼ 30� is
equal to jkj at h ¼ 60�.

In the experiments reported by Rao (1999) the laboratory setup is different. Here, mode II cracks were
examined in square double-notched specimens in a so-called shear-box. Two inclined straight surface cracks
are considered, each of length a. The ligament length is W � 2a, where W is the width of the specimen. A
simplified model for calculating the ratio ðr11 � r22Þ=r12 may under these circumstances be written as

ðr11 � r22Þ=r12 ¼
sin2 h � cos2 h
sin h cos h

1

1� 2a=W
; ðA:6Þ

where the term 1=ð1� 2a=W Þ come from an equilibrium condition of the nominal stress in the ligament
computed from the ratio load/area, an elementary formula which does not take account of the stress
concentration ‘‘peak’’ at the crack tip. As the crack considered is a surface crack, the curvature parameter k
is in this case approximated by the simplified expression

k ¼ � 8
ffiffiffiffiffiffi
2p

p

39

1

1:12
ffiffiffiffiffiffi
pa

p sin2 h � cos2 h
sin h cos h

1

1� 2a=W
: ðA:7Þ

References

Bilby, B., Eshelby, J.D., 1968. Dislocations and the theory of fracture. In: Liebowitz, H. (Ed.), Fracture and Advanced Treatise, vol. 1.

Academic Press, New York, pp. 99–182.

Bobet, A., 1997. Fracture coalescence in rock materials: experimental observations and numerical predictions. Ph.D. thesis.

Massachusetts Institute of Technology. Cambridge, MA, USA.

Bobet, A., Einstein, H.H., 1998. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int. J. Rock

Mech. Min. Sci. 35, 863–888.

2296 P. Isaksson, P. St�aahle / International Journal of Solids and Structures 39 (2002) 2281–2297



Bobet, A., 2000. The initiation of secondary cracks in compression. Eng. Fract. Mech. 66, 187–219.

Broberg, K.B., 1987. On crack paths. Eng. Fract. Mech. 28, 663–679.

Broberg, K.B., 1999. Cracks and Fracture. Academic Press, London, UK.

Chan, H.C.M., Li, V., Einstein, H.H., 1990. A hybridized displacement discontinuity and indirect boundary element method to model

fracture propagation. Int. J. Fract. 45, 263–282.

Cotterell, B., Rice, J.R., 1980. Slightly curved or kinked cracks. Int. J. Fract. 16, 155–169.

Erdogan, F., Sih, G.C., 1963. On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85, 519–527.

He, M.Y., Hutchinson, J.W., 1989. Kinking of a crack out of an interface. J. Appl. Mech. 56, 270–278.

Hayashi, K., Nemat-Nasser, S., 1981a. On branched, interface cracks. ASME J. Appl. Mech. 48, 529–533.

Hayashi, K., Nemat-Nasser, S., 1981b. Energy-release rate and crack kinking under combined loading. J. Appl. Mech. 48, 520–524.

Isaksson, P., St�aahle, P., 2001. Crack kinking under high pressure in an elastic–plastic material. Int. J. Fract. 108, 351–366.

Isaksson, P., St�aahle, P., 2001. Prediction of shear crack growth direction under compressive loading and plane strain conditions. Int.

J. Fract., in press.

Jung, S.J., Enbaya, M., Whyatt, J.K., 1992. The study of fracture of brittle rock under pure shear loading. In: Mybe, L.R., Tsang,

C.F., Cook, N.G.W., Goodman, R.E. (Eds.), Fractured and Jointed Rock Masses: Proceedings of the Conference on fractured and

jointed rock masses. Lake Tahoe, CA, USA, pp. 457–463.

Lajtai, E., 1974. Brittle fracture in compression. Int. J. Fract. 10, 525–536.

Leblond, J.-B., Frelat, J., 2000. Crack kinking from an initially closed crack. Int. J. Solids Struct. 37, 1595–1614.

Li, S., 1999. Modeling fracture and deformation of brittle rock under compressive loading. Ph.D. thesis. The University of Manitoba,

Winnipeg, Canada.

Lo, K.K., 1978. Analysis of branched cracks. J. Appl. Mech. 45, 797–802.

Melin, S., 1986. When does a crack grow under mode II conditions? Int. J. Fract. 30, 103–114.

Melin, S., 1987. Fracture from a straight crack subjected to mixed mode loading. Int. J. Fract. 32, 257–263.

Melin, S., 1989. Why are crack paths in concrete and mortar different from those in PMMA? Mater. Struct. 22, 23–27.

Petit, J.-P., Barquins, M., 1988. Can natural faults propagate under mode II conditions? Tectonics 7, 1243–1256.

Rao, Q., 1999. Pure shear fracture of brittle rock––a theoretical and laboratory study. Ph.D. thesis. Lule�aa University of Technology,

Sweden.

Reyes, O., 1991. Experimental study and analytical modelling of compressive fracture in brittle materials. Ph.D. thesis. Massachusettes

Institute of Technology, MA, USA.

Reyes, O., Einstein, H.H., 1991. Failure mechanisms of fractured rock––a fracture coalescence model. In: Wittke, W. (Ed.),

Proceedings of the International Congress on Rock Mechanics. Aachen, Germany, pp. 333–340.

Shen, B., 1993. Mechanics of fractures and intervening bridges in hard rocks. Ph.D. thesis. Royal Institute of Technology, Stockholm,

Sweden.

Shen, B., Stephansson, O., Einstein, H.H., Ghahreman, B., 1995. Coalescence of fractures under shear stresses in experiments.

J. Geophys. Res. 100, 5975–5990.

Suresh, S., 1994. Fatigue of Materials. University Press, Cambridge, UK.

P. Isaksson, P. St�aahle / International Journal of Solids and Structures 39 (2002) 2281–2297 2297


